28 research outputs found

    Switching quantum reference frames in the N-body problem and the absence of global relational perspectives

    Get PDF
    Given the importance of quantum reference systems to both quantum and gravitational physics, it is pertinent to develop a systematic method for switching between the descriptions of physics relative to different choices of quantum reference systems, which is valid in both fields. Here, we continue with such a unifying approach, begun in arxiv:1809.00556, whose key ingredients is a gravity-inspired symmetry principle, which enforces physics to be relational and leads, thanks to gauge related redundancies, to a perspective-neutral structure which contains all frame choices at once and via which frame perspectives can be consistently switched. Formulated in the language of constrained systems, the perspective-neutral structure turns out to be the constraint surface classically and the gauge invariant Hilbert space in the Dirac quantized theory. By contrast, a perspective relative to a specific frame corresponds to a gauge choice and the associated reduced phase and Hilbert space. Quantum reference frame switches thereby amount to a symmetry transformation. In the quantum theory, they require a transformation that takes one from the Dirac to a reduced quantum theory and we show that it amounts to a trivialization of the constraints and a subsequent projection onto the classical gauge fixing conditions. We illustrate this method in the relational NN-body problem with rotational and translational symmetry. This model is particularly interesting because it features the Gribov problem so that globally valid gauge fixing conditions are impossible which, in turn, implies also that globally valid relational frame perspectives are absent in both the classical and quantum theory. These challenges notwithstanding, we exhibit how one can systematically construct the quantum reference frame transformations for the three-body problem.Comment: 22 pages, plus appendice

    Dynamics of quantum causal structures

    Full text link
    It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, due to quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g. one cannot say whether operation in laboratory A occurs before or after operation in laboratory B). Here we develop a framework for "dynamics of causal structures", i.e. for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B, via superposition of causal orders, to a channel from B to A. We generalise our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.Comment: 13+5 pages, 4 figures. Two appendices added. Published versio

    Einstein's Equivalence principle for superpositions of gravitational fields

    Full text link
    The Principle of Equivalence, stating that all laws of physics take their special-relativistic form in any local inertial frame, lies at the core of General Relativity. Because of its fundamental status, this principle could be a very powerful guide in formulating physical laws at regimes where both gravitational and quantum effects are relevant. However, its formulation implicitly presupposes that reference frames are abstracted from classical systems (rods and clocks) and that the spacetime background is well defined. It is unclear if it continues to hold when quantum systems, which can be in a quantum relationship with other physical systems, are taken as reference frames, and in a superposition of classical spacetime structures. Here, we tackle both questions by introducing a relational formalism to describe quantum systems in a superposition of curved spacetimes. We build a unitary transformation to the quantum reference frame (QRF) of a quantum system in curved spacetime, and in a superposition thereof. In both cases, a QRF can be found such that the metric looks locally minkowskian. Hence, one cannot distinguish, with a local measurement, if the spacetime is flat or curved, or in a superposition of such spacetimes. This transformation identifies a Quantum Local Inertial Frame. We also find a spacetime path-integral encoding the dynamics of a quantum particle in spacetime and show that the state of a freely falling particle can be expressed as an infinite sum of all possible classical geodesics. We then build the QRF transformation to the Fermi normal coordinates of such freely falling quantum particle and show that the metric is locally minkowskian. These results extend the Principle of Equivalence to QRFs in a superposition of gravitational fields. Verifying this principle may pave a fruitful path to establishing solid conceptual grounds for a future theory of quantum gravity.Comment: 18 pages main text, 10 pages Appendices, 3 figures. Improved Appendix G, minor edits throughout the tex
    corecore